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We have developed a nonlocal functional of the exchange interaction for the ground-state energy of quantum
spin chains described by the Heisenberg Hamiltonian. An alternating chain is used to obtain the correlation
energy and a local unit-cell approximation is defined in the context of the density-functional theory. The
agreement with our exact numerical data, for small chains, is significantly better than a previous formulation,
even for chains with several ferromagnetic or antiferromagnetic bond defects. The results can be particularly
relevant in the study of finite spin-1/2 Heisenberg chains, with exchange couplings changing, magnitude, or
even sign, from bond-to-bond.
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I. INTRODUCTION

Spin Hamiltonians are among the most relevant in con-
densed matter, since they describe magnetism with origin in
localized moments,1 which is very common in real materials.
Sophisticated procedures have been developed in order to
obtain the energy spectra of those Hamiltonians, or at least,
the ground-state energy �GSE� in the cases of more complex
spin models. The homogeneous, translational invariant,
spins-1/2 Heisenberg model can be solved by Bethe ansatz.
However, if translational symmetry is broken, like in most
real systems, powerful numerical methods, such as Monte
Carlo simulations, can be applied, but at high computational
cost. More than challenges to our theoretical approaches,
real-life complications, such as magnetic impurities, bond
defects, finite-size effects, vacancies, etc, are important in-
gredients to be added to models today, due to the crescent
interest in novel materials.

For realistic models, sometimes we just have good esti-
mates for fundamental properties, such as correlation ener-
gies. The mean-field �MF� approximation, although can al-
ways be applied, is not, in general, accurate enough. In this
Brief Report we describe one analytical procedure to esti-
mate beyond-mean-field energies for finite spin-1/2 chains
with bond defects. We apply density-functional theory �DFT�
�Ref. 2� in the context of the Heisenberg model, as described
in Refs. 3–6, where the GSE was computed for antiferro-
magnetic chains or lattices containing impurity spins. In all
applications in those references, the exchange interactions
have the same value and sign �all antiferromagnetic�. We
want to go beyond this limitation.

The DFT procedure to construct a spin functional starts
with a homogeneous system for which we know the correla-
tion energy as a function of the spin S. The simplest way to
build the correlation-energy functional for a nonhomoge-
neous system is the use of local approximations. References
3–6 define the local-spin approximation �LSA�, consisting in
replacing the spin S by its value Si at each site i. An analo-
gous procedure was used in Ref. 8 to build an energy func-
tional of the bond distribution Jb �index b labels the bond
between two successive spins�, defining a local-bond ap-
proximation �LBA� in the same way LSA is made, that is,
substituting J by its local value Jb in the correlation energy

of the homogeneous system. We follow the same lines but
we obtain a functional of the ratio Jb+1 /Jb of successive ex-
change interactions. In this context, this represents a step in
the direction of defining nonlocal functionals. The main idea
here is to start with a homogeneous system that has already
some characteristics of the inhomogeneous systems of inter-
est. We propose the use of an alternating chain,9 a system of
spins 1/2 with exchange interactions J and �J alternating
from bond-to-bond. In terms of unit cells consisting of two
successive bonds each, this chain is homogeneous in the
variable �. Thus, a local unit-cell approximation can be in-
troduced, as described below. Our results are significantly
more accurate than those of Ref. 8 but they are restrict to
chains of spins 1/2. We assess the validity of our results by
comparing them with exact numerical data obtained for
small chains using the power method algorithm.

II. LOCAL UNIT-CELL APPROXIMATION

The basic assumption of DFT about spin systems is that
the ground state ��0� is a functional of the classical spin-
vector distribution �S� i�, for a given set of exchange interac-

tion �Ji�. Hence, the expectation value ��0�S� i	�Ô��0�S� i	� of

any spin operator Ô is also a functional of the spin distribu-
tion, and in particular, the GSE E0=E0�S� i	
= ��0�S� i	�Ĥ��0�S� i	�. This makes possible the use of DFT in
nonhomogeneous systems, but in general, an approximation
is required to obtain E0�S� i	. Since the MF term E0

MF�S� i	
=
�i,j�JiS� i ·S� j is already a functional of the vector S� i, we may
write

E0�S� i	 � E0
MF�S� i	 + Ec�S� i	 , �1�

which defines the correlation energy functional Ec�S� i	. To
obtain an approximation for Ec�S� i	, we take a related homo-
geneous system and calculate for it Ec�S�=E0�S�−E0

MF�S�.
Knowing any approximation for E0�S� better than MF, e.g.,
from spin-wave theory, we can obtain an approximation for
Ec�S�. The simplest way to build the correlation functional
for an inhomogeneous system is through a local-spin
approximation
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Ec
LSA�J,S� i	 = 


i=1

N �Ec�J,S�
N

�
S→�S� i�

, �2�

where the sum runs over N spins. This approximation re-
sembles the famous local-density approximation for elec-
tronic systems.2,7 LSA has been applied to Heisenberg model
with impurity spin, in one, two or three dimensions,3–6 but in
all cases to systems with antiferromagnetic uniform ex-
change interactions J.

To extend the local-approximation scheme to spin Hamil-
tonians with bond defects, Ref. 8 proposed the following
local-bond approximation:

Ec
LBA�Jb,S	 = 


b=1

Nb�Ec�J,S�
Nb

�
J→Jb

, �3�

where the sum runs over Nb bonds.
Consider now a chain of spins 1/2 as a sequence of Nu

=Nb /2 unit cells, each cell with one bond J and the succes-
sive bond �J. This alternating chain, illustrated in Fig. 1, is
defined by the Heisenberg-type Hamiltonian

Ĥ = 

i=1

N

�JŜ2i−1 · Ŝ2i + �JŜ2i · Ŝ2i+1	 �4�

with Ŝi a spin operator �not the classical vector S� i�.

The chain made of unit cells can be seen as being homo-
geneous in �, and thus a local unit-cell approximation
�LUCA� can be defined as

Ec
LUCA��u	 = 


u=1

Nu�Ec
alt���
Nu

�
�→�u

, �5�

where Ec
alt��� is the correlation energy of the alternating

chain. �u is the local value of � in the u cell. Although local
in �, Ec

LUCA��u	 is nonlocal in Ji since �u=Ji+1 /Ji.
In the work of Barnes et al.,9 the GSE, per site and in

units of J, of an alternating chain is expressed as the follow-
ing polynomial expansion valid for 0���1:

FIG. 2. �Color online� GSE, per unit of JNb, of 24 spins 1/2 in
a ring with one antiferromagnetic defect of strength J�, as a function
of the ratio J� /J. The agreement between the exact numerical data
�squares� and those from LUCA �triangles� is very good. The dif-
ference between MF results �circles� and the exact data is the cor-
relation energy, which value is about half of the exact energy.

FIG. 3. �Color online� GSE, per unit of JNb, of an open chain
with 24 spins 1/2, as a function of the position of one defect of
strength J�=0.5J. Exact data �squares� and LUCA results �open
triangles� show oscillatory pattern, absent in the MF �circles� and in
the LBA �full triangles� results.

FIG. 4. �Color online� Size dependence of the GSE, per unit of
JNb, of rings with one defect of strength J�=5 J. Results from
LUCA �open triangles� agree much better with the exact data
�square� than those from LBA-SW �full triangles� or from LBA-
DMRG �stars�.

J αJ J αJ J αJ J

unit cell

FIG. 1. �Color online� Spin chain with exchange interaction J
and �J alternating from bond-to-bond. Two successive bonds, J and
�J, defines one unit cell. The sequence of unit cells is a homoge-
neous chain in �.
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e0��� = −
3

8
+ f��� �6�

with

f��� = −
3

26�2 −
3

28�3 −
13

212�4 −
89

214 � 3
�5 −

463

217 � 3
�6

−
7 � 61 � 191

222 � 33 �7 −
11 � 139 � 271

221 � 34 � 5
�8

−
107 � 22005559

230 � 35 � 52 �9. �7�

For ��1, we use e0���=� e0��−1�, a property that follows
directly from the Hamiltonian. For �=0, the chain reduces to
Nb free bonds and e0�0�=−3 /8 is exact. For �=1 the chain is
uniform, and e0�1�
−0.441325 is only 0.4% from the
Bethe-ansatz value −0.443147, a good result for an expan-
sion valid for ��1.

The MF approximation for the alternating chain of N
spins 1/2 gives e0

MF���=−�1+�� /8 for the GSE per bond.
Thus, the correlation energy ec���=e0���−e0

MF��� is

ec��� = −
1

4
+

�

8
+ f��� �8�

resulting, after the use of Eq. �5�

Ec
LUCA��u	 = J


u=1

Nu

2�ec��u�	�1 − �u� + �uec��u
−1�	��u − 1�	 ,

�9�

where 	�x�=1 for x�0 and 	�x�=0 for x�0 is the Heaviside
function, introduced to take into account defects with �u
�1 or �u�1. Finally, the GSE is found minimizing the fol-
lowing functional respect to the spins variables S� i �obeying
the constraint �S� i�=1 /2�:

ELUCA��u,S� i	 = 

i=1

N

JiS� i · S� i+1 + Ec
LUCA��u	 . �10�

III. RESULTS

We show results using the above functional for finite
chains containing bond defects and/or boundary effects. Bet-
ter results are expected for chains similar to the alternating
one and with 0��u
1 or �u�1 since this is the base upon
the functional was built. However, the functional is robust
and gives good estimates even for � out of that range. We
also observe that the deviations from the exact data are
smaller when the defects are in the bond type �J. Although
the functional can be easily applied for chains with arbitrary
size, we limit our examples to chains with 24 spins 1/2 in
order to compare our estimates with exact results. These are
obtained using the well-known power algorithm,8 performing

E0 = lim
k→�

�
��Ĥ − ��k+1��T�

�
��Ĥ − ��k��T�
+ � . �11�

This defines a sequence of k steps to reach convergence. For
the trial vector ��T� we use the MF ground state. �
�
��Ĥ−��k−1��T� used at step k is obtained in the step k−1.
The constant � is an upper limit of the energy spectrum;

FIG. 5. �Color online� GSE, per unit of JNb, of 24 spins 1/2 in
a ring with ferromagnetic and antiferromagnetic exchange interac-
tion alternating from bond-to-bond, as a function of the ratio �.
Exact data �squares� are compared with LUCA results �triangles�
and MF data �circles�.

J J ′ J αJ J ′′ αJ J ′′′

FIG. 6. �Color online� Alternating ring with three defects, J�
=0.5J in an �J-type bond, defects J�=0.7J and J�=0.9J in a J-type
bond.

FIG. 7. �Color online� Dependence on � of the GSE, per unit of
JNb, of 24 spins 1/2 in a ring with three defects arranged as in Fig.
6. Exact data �squares� deviate about 2% from LUCA results
�triangles�.
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without it the power method would return the highest eigen-
value of Ĥ.

Let’s first consider a finite spin ring with antiferromag-
netic bonds of strength J, except one, the defect, with
strength J�. This case has little resemblance to an alternating
chain, because we have �u=1 in all unit cells, except in one
of them, where �u=J� /J. Figure 2 shows our results �tri-
angles� for the GSE per bond as a function of the ratio J� /J.
The agreement with exact results �squares� is very good,
even for J� close to J where the deviation is less than

0.7%. Note the large value of the correlation energy, about
half of the GSE; one has really a strong correlated system
and the energy Ec is not just a perturbation in the MF term.
The DFT plus the local approximation go beyond the simple
perturbation theory.

In Fig. 3 we fixed J� /J=0.5 and show the GSE per bond
as a function of the position of this defect in an open chain.
Contrary to MF �circles� and the LBA results �full
triangles�,8 the functional �open triangles� captures the oscil-
lations present in the exact data �squares�, although not the
phase �the up and downs are reversed�. This is an example of
the importance of the correlation energy. The errors are
larger than those of the previous figure, probably due to
finite-size effects introduced by the open-boundary
condition.

Figure 4 compares our results from the LUCA with two
local-bond approximations developed in Ref. 8, for chains
with different sizes and with one strong defect with strength
J�=5J. The LBA-SW uses the results from spin-wave theory
�SW� to build the correlation energy, whereas LBA-DMRG
uses results from density matrix renormalization group
�DMRG� to do that. Both approximations define functionals
of Jb. The advantage of LUCA comes from its dependence
on the ratio Jb+1 /Jb.

Several compounds exhibit ferromagnetic and antiferro-
magnetic alternating-bond-type ordering, some of them even
with one-dimensional characteristics.10,11 We consider here a
simple system consisting of a ring of spins 1/2. The results in

Fig. 5 show that our functional �triangles� reproduces in the
range −1���0 quite well �errors less than 3%� the exact
data �squares�, whereas MF �circles� is good only near J�
=0; in this limit, the chain is broken in twelve independent
ferromagnetic dimers and for this ordering MF solution for
the ground state is exact, therefore, there is no correlation
energy at this point. For the special limit �=−1, the numeri-
cal exact result for our finite ring is e0=−0.41225829,
whereas our estimate is −0.41210.

To illustrate a situation with several defects, we consider
an alternating ring with three defects, J�=0.1J, J�=0.7J, and
J�=0.9J, arranged as depicted in Fig. 6. The first defect is in
a bond of type �J and the other two in bonds of type J.
Figure 7 shows that the data from the functional �triangles�
deviate about 3% from the exact results �squares�. This error
is large because two defects, J� and J�, are in J-type bonds
and this tends to raise the errors. For example, with J� and J�
in �J-type bonds, while J� in a J-type bond, the error drops
to 0.5% for 0���1.

IV. CONCLUSIONS

Local approximations are common in the context of DFT
�Ref. 7� but when used in models with several inhomogene-
ities the results may be not so good. Our local unit-cell ap-
proximation uses an alternating chain9 as a starting point to
build correlation energies. Thus, our functional already has
characteristics of nonuniform chains, what yields much bet-
ter estimates for the GSE than the previous formulation using
LBA.8 At present we are exploring the idea of unit cells to
construct nonlocal spin functionals, and perhaps circumvent-
ing the major limitation of our present functional, applicable
only to chains of 1/2 spins. In spite of this, our analysis
covers theoretical issues related to important materials show-
ing special magnetic ordering, such as tetrameric compounds
described by Heisenberg antiferromagnetic chains.11
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